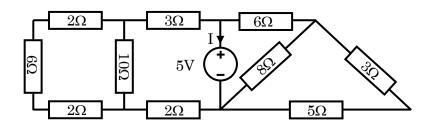
Nom:	Prénom:	Groupe:
ECOLE POLYTEC	HNIQUE UNIVERSITAIRE DE N	ICE SOPHIA-ANTIPOLIS
POLYTECH' NICE-SOPHIA	Cycle Initial Polytech Première Année Année scolaire 2020/2021	Note / 20
UNIVERSITÉ CÔTE D'AZUR	DS électronique analogique No2	7 20

Jeudi 6 Mai 2021 Durée : 1h30

☐ Cours et documents non autorisés.


Pour une bobine : U_L = L.(dI/dt) , Z_L = $jL\omega$

- ☐ Calculatrice de type collège autorisée
- ☐ Vous répondrez directement sur cette feuille.
- ☐ Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- **□** Vous devez:
 - indiquer votre nom et votre prénom.
 - éteindre votre téléphone portable (- 1 point par sonnerie).

RAPPELS:

Solution d'une équation différentielle du 1er ordre (A, B, C et τ sont des constantes) : $\frac{dV}{dt} + \frac{V}{\tau} + C = 0 \qquad V = A. \exp\left(-\frac{t}{\tau}\right) + B$ Puissance $P = U.I = R.I^2$ $\omega = 2\pi F$ Filtre passe bas : $G(\omega) = \frac{H}{1 + j\frac{\omega}{\omega_C}}$ $G(\omega) = \frac{H.j\frac{\omega}{\omega_C}}{1 + j\frac{\omega}{\omega_C}}$ Pour un condensateur : $Q = C.U_C$, I = dQ/dt, $Z_C = 1/(jC\omega)$

Figure I.1.

Soit le circuit de la figure (I.1.).

I.1. Sans le justifier, déterminer la valeur de la résistance « vue » par le générateur de tension de 5V :

R =

1 I.2. Déterminer la valeur du courant absorbé par le générateur.

I =

Brouillon

Brouillon

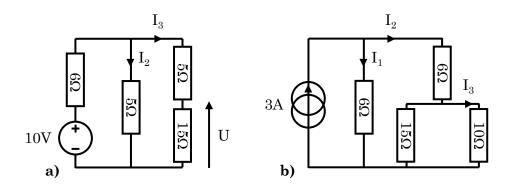


Figure II.1.

Soit les circuits de la figure (II.1). Sans le justifier, déterminer la valeur de :

Figure a) $I_2 =$	Figure a) $I_3 =$
Figure a) U =	
Figure b) $I_1 =$	Figure b) $I_2 =$
Figure b) $I_3 =$	

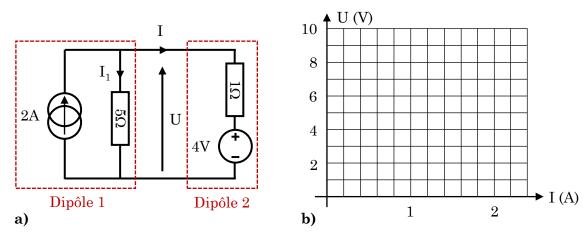


Figure III.1.

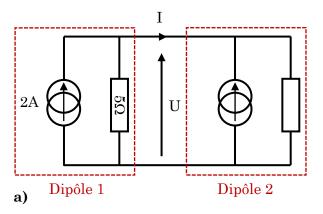
Soit le montage de la figure (III.1.a) constitué de 2 dipôles. Les questions (III.1) et (III.2) sont indépendantes.

III.1. Point de fonctionnement

0.5 III.1.1. Déterminer l'expression de U(I) (U en fonction de I) du dipôle n°1

U =

0.5 III.1.2. Déterminer l'expression de U(I) du dipôle n°2


U =

III.1.3. Tracer les deux courbes U(I) sur la figure (III.1.b)

III.1.4. Déterminer graphiquement <u>la</u> valeur du courant I et <u>la</u> valeur de U pour ce circuit.

1 U = I =

Brouillon

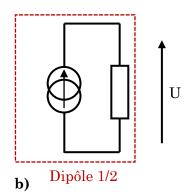


Figure III.2.

III.2. Détermination de la valeur de U

III.2.1. Sur la figure (III.2.a) indiquer les valeurs du générateur de courant équivalent au 0.75 dipôle n°2

III.2.2. Sur la figure (III.2.b) indiquer les valeurs du générateur de courant équivalent au dipôle n°1 et 2 $\,$

III.2.3. Donner alors la valeur de U

0.5

U =

Brouillon
<u> </u>

Soit le montage de la figure (IV.1) où E est un signal sinusoïdal $E=E_0.cos(\omega t)$. On considère la sortie sur la résistance.

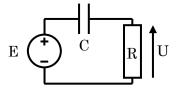


Figure IV.1.

1V.1. En utilisant les notations complexes, donner l'expression de la fonction de transfert et faire clairement apparaître la forme d'un passe-haut ou d'un passe-bas (c.f. rappels) :

$$G(\omega) = \underline{U} / \underline{E} =$$

1 IV.2. Donner l'expression de H et de ωC.

$$H = \omega_C =$$

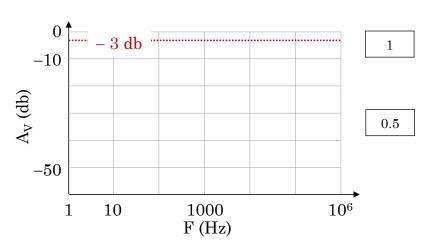
0.5 **IV.3**. Donner l'expression du gain.

$$A_V(\omega) = |G(\omega)| =$$

0.5

IV.4 Donner l'expression du gain en décibels.

$$A_{V db}(\omega) =$$


IV.5	Déterminer l'expression des deux asymptotes au	gain en décibels, correspondant pour
l'une	e au comportement asymptotique à basse fréquen	ice et pour l'autre au comportement L
asym	nptotique à haute fréquence.	

En BF:

En HF:

IV.6 On suppose que la fréquence de coupure a une valeur de 1000 Hz. Tracer les 2 asymptotes sur la figure (IV.2)

IV.7 Sur la même figure, placer le point correspondant à la valeur du gain pour la fréquence de coupure et tracer l'allure de la courbe de gain.

1

Figure IV.2.

rouillon	

Soit le montage de la figure (V.1) où E est un signal sinusoïdal $E = E_0.cos(\omega t)$. On considère la sortie sur la résistance.

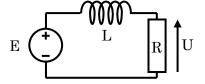


Figure V.1.

0.5	V.1. En utilisant les notations complexes	, donner l'expression de la fe	onction de transfert et
0.5	V.1. En utilisant les notations complexes faire clairement apparaître la forme d'un p	asse-haut ou d'un passe-bas ((c.f. rappels) :

$$G(\omega) = \underline{U} / \underline{E} =$$

_____ **V.2**. Donner l'expression de H et de $\omega_{\rm C}$.

$$H = \omega_C =$$

0.5 **V.3**. Donner l'expression du gain.

$$A_V(\omega) = |G(\omega)| =$$

0.5 V.4 Donner l'expression du gain en décibels.

$$A_{V_{-db}}(\omega) =$$

Brouillon

V.5	Déte	rminer	l'expres	sion de	es deux	ка	sympto	otes a	u gai	n er	n déc	ibels,	corre	spondant	pour
l'un	e au	compo	rtement	asymp	totique	à	basse	fréqu	ence	et 1	pour	l'autr	e au	comporte	ement
asyr	nptot	ique à l	haute fré	equence).										

En BF:

En HF:

Brouillon

V.6 On suppose que la fréquence de coupure a une valeur de 1000 Hz. Tracer les 2 asymptotes sur la figure (V.2)

V.7 Sur la même figure, placer le point de la courbe correspondant à la valeur du gain pour la fréquence de coupure et tracer l'allure de la courbe de gain.

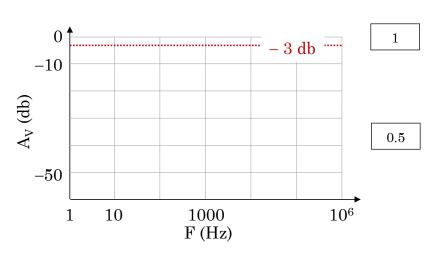


Figure V.2.